Elliott Montroll Lecture Series at U of R in February !

Connie Jones from the U of R Physics and Astronomy office would like to announce the Elliott Montroll lectures with Prof David Stevenson from Cal Tech.
Lecture dates will be :
Feb 20: Planetary Diversity, 4:00 pm, Bausch and Lomb Hall 109
Feb 21: Origin of the Moon, 4:00 pm, Lander Auditorium, Hutchison Hall
Feb 22: Jupiter, 7:00 pm, Memorial Art Gallery Auditorium
Click links below to see more details for each lecture
Elliott Montroll Poster (all 3 lectures)
2018 PAS poster
2018 MAG poster
2018 ESS poster

June 17 2017 : From Marty Pepe – Radio Astronomy news !

Introducing Hans Heyn

Hans Heyn is a new ASRAS member that has joined the Radio Telescope team, please welcome his enthusiasm, experience and radio skills in developing Radio Jove. He is a great addition to this growing branch of our ASRAS (radio) astronomy. – Martin Pepe (mjpastro@gmail.com)
Hans Heyn was born in 1938 in the Netherlands. He went to Delft University for a BSc and MSc in Chemical Engineering. He joined Esso, now ExxonMobil in 1960 still in the Netherlands. He moved to Exxon Chemicals in Brussels, Belgium in 1967 and then on to Productos Quimicos Esso in Castellon, Spain in 1971. In 1975 he moved from Spain to Canada where he became involved in hydrocarbon based plastics. He subsequently moved for Exxon Chemical to South Carolina where he became a US citizen and finally to Illinois. Most of the time he was involved in R&D. He retired in 1998.
Hans is a long time radio enthusiast and has the amateur radio call sign KB9MFQ.

RADIO JOVE REVISITED

You did not hear much about ASRAS’ Jove project during the last year or so, because not much happened. But that is going to change, and the 2017 – 2018 plans are ambitious. Jove is a radio astronomy project, and that label may have led to some misunderstanding of what this is all about.
Some astronomers think that optical and radio astronomy are different disciplines. But that is not so. Both study the electromagnetic waves emitted (or reflected) by astronomical objects. The only difference is the observation wavelength, just as the differences in wavelength between optical astronomical observations in the Infra-Red, Visible or Ultra Violet parts of the spectrum. Optical astronomy involves wavelengths measured in angstroms, while in radio astronomy the wavelengths range from fractional inches to tenths of feet. That is roughly a billion times longer. To build a radio telescope analogous to an optical telescope would thus require a much larger aperture. That is not really practical; even the Arecibo radio telescope in Puerto Rico (1000 feet diameter) and the new one in China (over 5 football fields in diameter) does not come close.
Because the wavelengths are so large, radio telescopes often do not produce images. Instead the radio receiver is tuned to a specific wavelength and the strength of that emission is measured over time. However large radio telescopes or several together can produce images by aiming at successive points around the object of interest.

You can’t call Meade Instruments or Edmund Scientific and buy a radio telescope. You have to build it yourself. Early radio telescopes were like Galileo’s first refractor, and are fairly easy to build. But there are many more reflector telescopes, often reusing obsolete radar hardware, or custom build, sometimes at very high cost like Arecibo. Most amateur radio telescopes are more modest however.
In radio telescopes, the antenna is the body of the telescope (gathering the signal) and the radio receiver is the eyepiece. In optical astronomy you look through the eyepiece at the image of the astronomical object or make photos. And looking at such an image today is often via a computer screen connected to a video camera, replacing the eyepiece. In radio astronomy there is often no image to look at. Instead there is an electrical signal that we can see and analyze on a computer screen and evaluate over time. And in some cases that signal can be send to a loudspeaker and can be heard.

Jove is a NASA project that started some 20 years ago. It involves a very simple refractor type radio telescope, using a 23 feet long antenna and a radio tuned to 20.1 MHz, the frequency that corresponds to the wavelength NASA found most useful to study Jupiter. As in a Broad Cast radio, the Jupiter signal is demodulated and produces sound. Jupiter sounds like crashing waves or distant thunder storms. This signal is processed by a computer and send to the NASA Jove net for further study. There are several hundred Jove telescopes all over the world, collecting Jupiter signals, but from different locations, building up the Jupiter data base and contributing to the understanding of that planet.

ASRAS’ Jove project to date has one NASA 20.1 MHz radio, the parts to build a second one, and the hardware, wires and such, to build one antenna. The plan is to install the first radio in the Ionia library, where it can be connected to the internet, and to attach the first antenna to the South facing facade of the main building. This combination is targeted to be operational before August 21, in order to be able to determine the effects (if any) of the solar eclipse on the measurement of Jupiter radio emissions. Next in 2017 will be the completion of radio # 2, as spare for # 1 and completion of a reliable internet connection with the NASA Jove network. In 2018 the first antenna should be replaced, increasing the gathering power of ASRAS’ radio telescope. Also in 2018, a spectroscopy capability could be added, maybe scanning from 18 to 22 MHz, NASA is still studying that.

It is possible to reach the August goal with one ASRAS member and a summer student from RIT or the U of R. But only just, and it would not be a real ASRAS endeavor. What is really needed is a team, of say five ASRAS members, with different backgrounds (computers, amateur radio, and software) to tackle the different parts of the project: antenna, radio, physical installation and hook up, computer processing of the data and sending the data to the Jove net. That team would next decide if and how to improve the radio telescope’s gathering power, if and how to add spectroscopy eg. by electronics or entirely by software, and draw plans for a further future. This team could also assist with the imminent move of the solar telescope and spectrometer (eCallisto) to Ionia. And forming a radio astronomy team at ASRAS will insure continuation of this radio astronomy capability in ASRAS.

It should be acknowledged that there is one BIG difference between radio astronomy and optical astronomy, you can practice radio astronomy 24/7, and totally independent of the weather, as the longer EM waves go right through clouds. That’s an important feature in doing astronomy in Western New York . – Hans Heyn KB9MFQ (barbheyn@ipa.net)

First annual Telescope Tune Up Day !

We had great success at our first Annual Telescope Tune Up day yesterday ! 

We had about 18 people bring in telescopes for cleaning, alignment, and instruction ! 

Thanks to our hardworking volunteers ! 

Ken Kressler

Don Chamberlin

Dave Thompson

Tom Yale 

Thanks to Steve Fentress and Strasenburgh for allowing us to set up in the lobby.

All of our customers were very happy and excited we were able to help them.

Solar Radio Telescope Update – August 2016

Update – August 2016 :

Solar Radio Telescope

The goal of this project is to study the RF signature of Sunspots, as part of the eCallisto global network. We’re going to be filling a big gap in their coverage map as there are no receivers on the east coast. If you’ve been following our activities you already know we’ve demonstrated this project’s ability to autonomously track the Sun regardless of the weather, with NO human intervention,  demonstrated at the RIT Imagine festival last year (photo, right).

This coming school year our plans are getting even bigger, with our sights on full automatic operation of all the functions, including automatic calibration, RFI noise removal and data file transfer to Zurich, SZ.

‘Stay tuned’ for status reports as we become fully operational, with student designed and built modules for a fully working system.     Our expected ‘first light’ is May 2017.

  • Marty Pepe

solar_radio_students

ASRAS NEEDS YOU !

ASRAS NEEDS YOU !

Please consider volunteering for future ASRAS events.

We are badly in need of some help for the following activities :

Strasenburgh scope on Sat nights !

Star parties ! (contact Jim Seidewand)

Outreach events ! (contact Joe Alteri)

Mowing at Ionia ! (contact Bob McGovern)

Thanks !

Joel

Welcome to the new ASRAS website !

Welcome to the new site everybody !

  • Please be patient while we put the finishing touches on our new wordpress website.
  • We do NOT have member log-ins yet. It will take a while to figure out what to make private and public.
  • See something broken ? Feature missing that the original had ? Please let webmaster Joel Schmid know.
  • We are looking for ASRAS web-site contributors ! Please let – you guessed it – webmaster Joel Schmid know if you would like to learn how to put cool astro-stuff on the website !

 

UPDATE NOV 2015

RadioTelescopeteam_9_13_15

We are in our third year of active development projects to look at the night sky in the Radio Spectrum and have been able to complete some major accomplishments. This past school year has seen both the University of Rochester (U of R), and Rochester Institute of Technology (RIT) deliver critical elements to the Solar Radio Spectroscope.

For our educational outreach event, we hosted a Boy Scout troop in Ionia (Pix_1), for a sleep over this last spring and were able to make our Portable Radio Telescope (PBT – itty bitty radio telescope) operational. It’s now completely portable, with battery power for ‘field’ use, with a high resolution turntable (better than 2 degrees angular resolution, Pix_2). Scouts had a great time ‘seeing’ their own body heat giving off RF energy, looking at the RF emissions from the Sun and finding Geosynchronous satellites in Earth orbit.

The Solar Radio Telescope project is coming together nicely. The purpose of this project is to study RF emissions from and ‘Angry’ Sun (visible sunspots, Pix # 3). We are elated that our Solar RT project was selected by RIT’s engineering department’s competition for their senior design activities. A team of seven students (Pix_4) designed phase II for our project to track the Sun in its daily movement. This effort includes customer requirements, animated simulations of the Sun’s movement from summer through winter, the PC, electronic controls, software, servos, and mechanical mounts. The spring semester saw this concept design executed in hardware, built in the RIT model shop, debugged in the lab, and then installed in Ionia! The pinnacle of this effort saw completely autonomous operation of Sun tracking without any human intervention (Pix_5), publically demonstrated at RIT’s Imagine Festival in May 2015 (Pix_6). Additionally, this design ‘puts itself to bed’ at night, knows when to look to the East for sunrise, and has a high wind ‘safe mode position (zenith), and park service (maintenance) position.

If this (above) accomplishment wasn’t enough, work done by the U of R team, allowed us to implement the real horizon in ‘Radio Eyes’ (our RF star data base). And their software control of the Callisto receivers allowed us to complete a RF site survey of the Ionia ‘scope location (Pix_7). Our proof of concept prototype was able to characterize the potential interfering emitters at the Ionia site (Pix_8), and provide actual usable RF Sun emission data. This work has established a new (potentially proprietary) mathematical technique for active noise cancellation of base (fixed location) interfering emitters. To our knowledge, no one in the Radio Telescope and/or eCallisto development community has seen this before.

Our plans for this coming year include expanding the small dome building (adjacent to our installation) enabling a corner of the building to act as an operator/debug station, a high speed internet and AC power connection, batch data transfer to Zurich, and system software integration.

Sincerely,

Martin J Pepe